If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=4y^2-14y+12
We move all terms to the left:
0-(4y^2-14y+12)=0
We add all the numbers together, and all the variables
-(4y^2-14y+12)=0
We get rid of parentheses
-4y^2+14y-12=0
a = -4; b = 14; c = -12;
Δ = b2-4ac
Δ = 142-4·(-4)·(-12)
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2}{2*-4}=\frac{-16}{-8} =+2 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2}{2*-4}=\frac{-12}{-8} =1+1/2 $
| 65=x^2+4x | | Y=1/4x-3= | | 12^15x/7=15^12x/7 | | 14.8x=60 | | 12^15x=15^12x | | 6x-13=4x+3 | | 10^3x-2=4239 | | (4x+3)^2=16 | | 10x-14=3420 | | 2b-3.4/0.6=-39 | | 2+5x=5(4x) | | 11x+80=180 | | 3x^2+8=91 | | X=-4/7y | | 9(4a-2)=12(3a+8 | | 84-3y=27 | | (18-x)^2+(15-x)^2=154 | | m+7/3=8 | | (18-x)^2(15-x)^2=154 | | X+x+x+3=80 | | 7x+10-2x=5(x+2) | | 2n+3=-12+3 | | H=-16t^2+48+64 | | (3x+5)(2x+7)=0 | | X^2-9x=8x | | 3x+60+5x-20=180 | | 9x+27=3(3x+9) | | 9b−12=6 | | X-1.2-x-5=1+x | | 9b-12=8 | | 7=4(v-5)-7v | | 5x+6+x+7=2x-3+2x |